
Send Orders of Reprints at reprints@benthamscience.org 

 Mini-Reviews in Medicinal Chemistry, 2012, 12, 1485-1496 1485 

 

Spirocyclic Nucleosides in Medicinal Chemistry: An Overview 

Raquel G. Soengas* and Sandrina Silva 

Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal 

Abstract: This review describes some spiro- and pseudospironucleoside derivatives as well as their biological and 
pharmacological applications. 

Keywords: Spironucleosides, Pseudospironucleosides, Carbohydrates, Antiviral, Antitumoral. 

1. INTRODUCTION 

 Nucleosides are structural subunits of nucleic acids, the 
macromolecules that convey genetic information in living 
cells. In fact, they embrace a large family of great structural 
diversity and wide biological activity spectrum [1]. Human 
creativity has been put to light in the ability of drug 
researchers to draw on an understanding of the biochemistry 
of naturally occurring nucleosides and to build up synthetic 
nucleoside analogs, which belong to the most important class 
of antiviral drugs and are extensively used as anticancer 
agents and in the treatment of other diseases [2]. 

 Nucleoside analogs prepared so far can be divided into 
three categories: 1) phosphate-modified, 2) base-modified, 
and 3) sugar-modified; most of the commonly known active 
compounds belong to the two latter groups. Base- and sugar-
modified nucleosides are valuable constituents of potent 
medicinal artificial oligonucleotides. 

 The ability to functionalize either the heterocycle or the 
sugar portion of a nucleoside has led to their use in antisense 
[3] and RNA interference [4] strategies. In these processes, 
specifically functionalized nucleotides are incorporated into 
oligodeoxyribonucleotides (ODN’s) targeted to specific 
RNA or DNA. The sugar portion of the nucleoside has 
become an important region for modifications, since the 
conformation of the sugar ring appears to control whether 
the ODN binds to RNA or DNA.  

 Conformationally restricted nucleoside analogs known as 
LNA’s (locked nucleic acids) have been synthesized to lock 
the sugar conformation in either the N or S conformation [5], 
enhancing base stacking and backbone pre-organization. 
Accordingly, conformational restriction of the furanose ring 
of nucleosides, nucleotides and oligonucleotides has been 
intensively pursued in recent years, stimulated by the 
potential application of these molecules as therapeutic agents 
[6]. Among those, spiro-functionalized nucleosides have 
recently gained more interest. 

 The term “spironucleoside” is used to designate a type of 
sugar derivative in which the anomeric carbon belongs 
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simultaneously to a pyranoid or furanoid sugar ring and to an 
aza-heterocyclic moiety [7]. The term “spiropseudonucleoside” 
is used when the spiranic carbon atom is not the anomeric 
carbon. The first natural spironucleoside known was (+)-
hydantocidin 1, isolated in 1991 from culture broths of 
Streptomyces hygroscopicus.  

 The observation that hydantocidin shows potent plant-
growth regulatory activities and low toxicity to microorganisms 
and mammals prompted the synthesis of spiro-functionalized 
nucleosides as conformationally restricted molecules [8]. 
Considerable attention has thereafter been paid to structural 
modifications of nucleosides [9]. The syntheses of spiro-
derivatives including C-1’-spiro, C-2’-spiro, C-3’-spiro, and 
C-4’-spironucleosides, as well as conformationally restricted/ 
based analogs, have subsequently appeared in the literature.  

 Considering the biological relevance of spiro-
functionalized nucleosides and the considerable synthetic 
efforts devoted to their preparation, the lack of a recent 
revision on this matter is somehow surprising. The aim of 
this mini-review is then to present an overview on the 
different types of spiro-functionalized nucleosides and their 
use as drug candidates. 

2. SPIRONUCLEOSIDES (C-1’-SPIRO-FUNCTION-

ALIZED NUCLEOSIDES) 

 As mentioned in the introduction, spironucleosides are 
defined as structurally modified nucleosides in which the 
base unit at the anomeric position is spiro to the sugar 
moiety [10], which means when the anomeric carbon 
belongs to both the sugar and the heterocyclic base. 
Spironucleosides have gained in importance with the 
discovery of hydantocidin, a natural spironucleoside isolated 
from fermentation broths of Streptomyces hygroscopicus 
SANK 63584 [11], Tu-2474 [12], and A1491 [13], which 
exhibits potent herbicidal activity with high selective toxicity 
between plants and animals. Biochemical studies have 
shown that hydantocidin is a proherbicide that inhibits 
adenylosuccinate synthetase, an enzyme that plays an 
important role in purine biosynthesis [14]. These 
observations have understandably stimulated considerable 
interest, not only in the synthesis of 1 [15], but also in a 
variety of its analogs, with the notion that important 
pharmaceutical leads can be found among modified nucleoside 
analogs. Included in this group are several hydantoin-type 
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analogs as well as diketopiperazines, barbiturates and more 
diverse spiroheterocyclic subunits. 

2.1. Hydantoines 

 First of all, some spirohydantoins from other sugars than 
D-ribose were synthesized with a view to discovering novel 
compounds with interesting biological properties. In 1995, 
Fleet et al. synthesized epimeric spirohydantoins based on 
glucopyranose 2 and 3 and biological results have shown 
that spirohydantoin 2 was the most active inhibitor of 
glycogen phosphorylase known to date, whith a Ki value of 
3.1 �M [16]. 

 Glycogen phosphorylase (GP; �-1,4-glucan: 
orthophosphate glycosyl transferase) [17] is a key enzyme in 
the regulation of muscle and hepatic glycogen metabolism, 
and catalyzes the first step in the intracellular degradation of 
glycogen [18]. Inhibition of glycogen phosphorylase [19] is 
believed to assist in shifting the equilibrium between 
glycogen degradation and glycogen synthesis in favor of the 
latter in both muscle and liver. Therefore, GP inhibitors may 
be clinically useful for the treatment of diabetes mellitus, 
especially the non-insulin dependent diabetes mellitus 
(NIDDM or type II diabetes). Diabetes, a disorder of 
chronically elevated blood glucose levels (hyperglycemia), is 
one of the most dangerous diseases killing people throughout 
the world [20]. Over 75% of patients suffering from this 
illness have type II form, also known as non-insulin-
dependent diabetes mellitus (NIDDM) [21] [22]. 
Hyperglycemia is a consequence of inadequate insulin 
release or insulin resistance [23], which results in increased 
glucose levels in the blood stream. Therefore, inhibition of 

glycogen phosphorylase (GP) enzymes can assist the 
regulation of blood sugar level in type II diabetes patients. 

 The activity of 2 as a potent inhibitor of glycogen 
phosphorylase has therefore stimulated the synthesis of 
hexose analogs of spirohydantoins as the anomeric 
spirohydantoins of glucofuranose 4 and 5 [24]. Analogs from 
other hexoses were also synthesized, as L-rhamnose 
derivatives 6 and 7 [25], or 6-deoxy-L-lyxose-derived 
spironucleoside 8 [26] (Fig. 1). 

 In the quest for glycogen phosphorylase inhibitors, a 
number of deoxyspironucleoside analogs were also 
synthesized. For example, 9-12 were prepared from 2-deoxy-
D-ribose and screened in vitro against rabbit muscle 
glycogen phosphorylase b (GPb). Compounds 10 and 12 
were found to be weak competitive inhibitors of the enzyme 
(Ki = 8.2x10-3 and 2.2x10-1 M, respectively), while the 
remaining two were inactive [27]. 2’-Deoxyhydantocidin 13 
and its 1’-epimer 15 as well as trityl derivatives 14 and 16 
were also described [28] (Fig. 2). 

 Some thiohydantoin derivatives have also been 
synthesized, mainly in connection with their potent 
biological activity. For example, it is known that changing 
the C-8 carbonyl in 2 by a thiocarbonyl group as in 17 (Fig. 
3, Ki = 5.1 �M), brings about practically no change in the 
inhibition of muscle GPb. In contrast to 2, compound 17 can 
advantageously be synthesized in a simple and highly 
stereoselective six-step route, starting from D-glucose, 
allowing 17 to be prepared in gram quantities [29]. 
Glucopyranosylidene-spiro-thiohydantoin (G-TH) 17, which 
was extensively studied as an inhibitor of glycogen 
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Fig. (1). Epimeric spirohydantoins. 
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phosphorylases [30], is also inhibitor of salivary amylase. 
For this reason, G-TH represents a new concept since this 
drug might be used successfully, not only for the prevention 
of dental caries but also as a supplementary drug for the 
treatment of sugar metabolic disorders [31]. 

 Fuentes et al. have developed a useful strategy for the 
syntheses of 7-thio analogs of hydantocidin. This procedure, 
based on the use of glycosyl isothiocyanates as intermediates 
[32], was employed for the synthesis of several thioderivatives, 
as for example 18 and 19 [33]. 

 Recent modifications of the nucleoside structure consist 
in the introduction of a selenium atom, an essential trace 
element [34], either by replacing the endocyclic oxygen atom 
of the carbohydrate residue [35] or as part of the nucleobase, 
leading to potent anti-HIV and anti-HBV activities [36]. 
Derivatives 20 and 21 were the first described selenium-
containing spironucleosides, incorporating an imidazoline-2-
selone unit in a fixed conformation around the glycosidic 
bond [37] (Fig. 3). 

2.2. Diketopiperazines 

 Cyclic dipeptides or diketopiperazines are among the 
most common peptide derivatives found in Nature. In fact, 
naturally occurring [38] as well as synthetic diketopiperazines 
[39] have a wide range of potential biological applications 
[40] and this feature has not escaped to the attention of 
researchers. Fleet et al. prepared several anomeric 

spirodiketopiperazines [41] from D-mannose (22 [41a, c], 23 
[41a, b, c], 24

 [41d,e]), D-glucose (25 [41f]), L-rhamnose 
(26 [41g], 27 [41g], 28 [41h]) and 6-deoxy-L-lyxofuranose 
(29 [41i], 30 [41i]) in order to find potential drug candidates 
(Fig. 4). Among them, the glucopyrano-derived 
spirodiketopiperazine 25 showed to be a strong and specific 
inhibitor of glycogen phosphorylase (Ki = 59.7 �M), 
although less effective than its spirohydantoin analog 2. 
After the pioneering work of Fleet’s group, other synthetic 
procedures have been developed in order to prepare different 
anomeric spirodiketopiperazines. For example, 2,3-deoxy 
derivatives 31 and D-lyxose derivative 32 were synthesized 
using a procedure featuring an acid-catalyzed rearrangement 
of a 3-hydroxy �-lactam and the ammonolysis of a spiro keto 
lactone [42].  

 Structurally related to spirodiketopiperazines are the 
spirodihydrouracil derivatives, which formally result from 
the insertion of a methylene group between the anomeric 
carbon and the nitrogen of the N-glycosidic bond. The 
hydantocidin-related spirodihydrouracil 33 [43] was 
synthesized to study the direction of the hydrogen bonding 
of the hydantoin part in the natural parent molecule. Also 
related to the spirodiketopiperazine skeleton is the spiro-
derivative 34, recently prepared from carbohydrate lactones. 
The synthetic route involves N-glycosylation of ulosonic 
acid esters, easily obtained via an indium-mediated 
Reformatsky reaction of aldonolactones with an alkyl �-
bromoisobutyrate [44] (Fig. 5). 
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Fig. (2). Deoxy analogues of epimeric spirohydantoins. 
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Fig. (3). Thiohydantoin derivatives. 
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Fig. (4). Anomeric spirodiketopiperazines. 
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Fig. (5). Anomeric spirodihydrouracil derivatives. 

 

2.3. Barbiturates 

 Similarly to the hydantoin ring, the barbiturate ring 
system is known to possess thymine-like hydrogen bonding 
capacity against adenine derivatives [45] and is found in 
many pharmaceutically important molecules [46]. The main 
problem with hydantoins and diketopiperazines is their 
instability, due to anomeric epimerization in basic media. To 
avoid epimerization around C-1’, hydantoin or 
diketopiperazine rings can be replaced by a barbiturate ring 
as exemplified by compound 35 [47] (Fig. 6). 
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Fig. (6). Anomeric barbiturate. 
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2.4. Polycyclic spironucleosides 

 A number of spironucleosides in which the base is 
attached to the anomeric position of the sugar giving rise to a 
polycyclic system have been described. Such molecules 
provide conformationally fixed models, which can be useful 
to elucidate the glycosidic torsion angle of nucleosides. The 
most common procedures to prepare this type of derivatives 
are radical reactions on the C-1’ position [48]. Following this 
procedure, several spironucleosides have been prepared, as 
6,l’-propanouridine 36 [49], 2-deoxy-6,1’-ethanouridine 37 
and 2-deoxy-6,1’-ethenouridine 38 [50], 6,1’-ethenopurines 
39 and 40 [51], oxygenated derivatives 41 and 42 [52] and 
aza-pyrimidine nucleosides 43 and 44 [53] (Fig. 7).  

3. SPIROPSEUDONUCLEOSIDES 

 In the search for new antiviral and anticancer agents, a 
large number of spiropseudonucleosides have been prepared 
and biologically evaluated over the last decade. This strategy 
allowed the discovery of new drugs of great importance, as 
the 3’C-spiropseudonucleoside TSAO-T, with potent anti-
HIV-1 activity. The most relevant spiropseudonucleosides 
synthetized to date are mentioned in this chapter. 

 

3.1. 2’C-Spiropseudonucleosides 

 The first synthesized spiropseudonucleoside were 2’C-
derivatives 45 and 46 [54]. Taking into account that 6-
deoxy-L-ketohexopyranosyl nucleosides exhibit significant 
activity against L1210 leukaemia in vivo[55] and that the 
epoxy group constitutes the critical moiety in the structure of 
important classes of antitumour compounds [56], spiroepoxy 
nucleosides 45 and 46 were prepared on account of their 
potential antineoplastic properties. 

 Later on, 2’-spirocyclopropane derivatives of  
2’-deoxyadenosine 47 and 48 have been synthesized [57] as 
a mechanistic probe for ribonucleotide reductases [58]  
(Fig. 8). As inhibition of these reductases interferes with the 
replication of genetic material required for cancer cell 
division or viral genome biosynthesis [59], the study of this 
process is of great interest in the quest for new drug 
candidates. 

 Since then, other 2’-spironucleoside derivatives have 
been synthesized: 2’-C, 2’-O-propanonucleosides 49 and 51 
and 2’-C, 2’-O-ethanonucleosides 50 and 52 were developed 
as novel conformationally restricted probes [60]; 2’-deoxy-
2’-spirocyclopropylcytidine 53 is an inhibitor of the 
HCVNS5BRNA-dependent RNApolymerase displaying an 

 
 

Fig. (7). Polycyclic spironucleosides. 
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EC50 of 7.3 �M and no cytotoxicity associated and thus 
clinically valuable for HCV (hepatitis C virus) treatment 
[61], and 2’-spiroisoxazolidine nucleoside analogs 54 and 55 

are of potential interest for its use in antisense and RNA 
interference strategies [62] (Fig. 9). 

3.2. 3’C-Spiropseudonucleosides 

 Searching for new nucleoside derivatives as inhibitors of 
HIV replication, Camarasa et al. synthesized 3’C-
spironucleosides 56-63 [63]. While xylo derivatives or ribo-
nucleosides with none or only one silyl group were shown to 
be inactive towards HIV-1, 3’-spiro ribo-nucleosides 
containing two silyl groups such as [1-[2’,5’-bis-O-(tert-
butyldimethylsilyl)-�-D-ribofuranosyllthymine]-3’-spiro-5’’-
[4’’-amino-1” ,2”-oxathiole 2”,2”-dioxide] (TSAO) 60a 
exhibited potent (EC50 = 0.034 �g/mL, CC50 = 7.7 �g/mL) 
and selective inhibition on HIV-1 replication [64] (Fig. 10). 

 As consequence of TSAO highly interesting biological 
activity, great efforts were devoted to the development of 
analogs in which the cytotoxicity is decreased without 
compromising the antiviral activity and the most common 

strategy is the introduction of slight modifications either in 
base or in sultone moiety [65]. Examples of sultone-modified 
derivatives are compounds 64-70 [66] and 71-72 [67], 
nevertheless, no antiviral activity at subtoxic concentration 
was achieved. Other 3’C-spiropseudonucleosides are lactone 
73 [68] and 3’-spirooxirane derivative 74 [69] (Fig. 11). 

2.4. 4’C-Spiropseudonucleosides 

 Since the first example of a C4’-homologated nucleoside 
reported in 1992 [70], molecules of this class have attracted 
much interest [71], motivated by several factors. In a first 
hand, the glycosyl torsion angle about the C4’-C5’-bond is 
now fixed, such that positioning of the hydroxyl 
functionality at R1 or R2 results in the adoption of rather 
different spatial orientations. Beyond this, DNA and RNA 
fragments have a considerably large void space in the region 
below C4’, which can accommodate several methylene 
groups [72]. Finally, DNA strand cleavage has been shown 
to occur due to the action of C4’-radicals. However, in 4’C-
branched nucleosides, the 4’-hydrogen is no longer present. 
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Fig. (8). Spiroepoxide and spirocyclopropane nucleosides. 
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 Of all the possibilities of substitution at C4’-position, the 
spirocyclization is particularly interesting, mainly due to 
conformational restrictions inherent to the spiro system. 
Paquette et al. carried out extensive research in this field, 
preparing several spirocyclic nucleosides (75 and 76 [73], 77 
and 78 [73a], 79 [73a] and 80 [74], 81 and 82 [75]) which 
were shown to display significant antiviral activity. Among 
them, the most relevant for its biological activity is 78, 
which displays strong inhibitory effect against human 
coronavirus. High selectivity and low cytotoxicity are 
additional characteristics of this substance. Closely related to 
those derivatives reported by Paquette’s group, nucleosides 
83 and 84 were developed using a completely different 
synthetic strategy [76] (Fig. 12). 

 As a direct consequence of potent antitumor and antiviral 
properties of several naturally occurring carbocyclic 
nucleosides [77], many efforts have been dedicated into the 
preparation of different types of those nucleoside analogs 
[78]. In order to achieve rigidification of the molecular 
architecture, the use of a spirocyclic restriction has been 
considered. Thus, carbocyclic analogs such as 85 a-e and 86 

a-e [79], have been built up (Fig. 13). 

 Heterosubstitution of the furanoid ring can provoke a 
profound effect on biological activity. For example, several 
sulfur mimics have been recognized as potent antiviral and 
anticancer agents [80]. These findings have ignited the 
interest for the synthesis of spirocyclic thionucleosides to use 
as biochemical probes, as C4’-spiropseudonucleosides 87, 88 
and 89 [81] (Fig. 14).  
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Fig. (10). 3’C-spironucleosides. 

 

73

O
TBSO

OTBS

64: R = CH3

65: R = CH2COOCH3

66: R = OCH2

67: R = Ph

O

S
O

O NH2

N

NH

O

O

O
TBSO

OTBS

O

N

NH

O

O

O

O
TBSO

OTBS

O

S

N

O

O

N

N

O

O

O

OTBSN

S
O

N

NH

O

O

O O

H2N

TBSO

NH2

68: R = Cl
69: R = Br
70: R = I

O
TBSO

OTBS

N

NH

O

O

OHO

71 72

74

R

 
 

Fig. (11). TSAO analogues. 
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Fig. (12). C4’-spirocyclized nucleosides. 
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Fig. (14). 4’C- spirocyclic thionucleosides. 
 

4. CONCLUSIONS 

 The past several years have witnessed explosive 
developments in spiro- and pseudospironucleoside 
chemistry, targeting many biological applications. Revising 
the existent world of those nucleosides, we can find many 
more extensive pharmaceutical applications, namely as 
antidiabetic, antiviral and antitumoral agents. Thus, looking 

to the future, the widespread and wide field of application of 
nucleosides in medicinal chemistry, and the emergence of 
increasingly sophisticated structures, seems certain to ensure 
continued interest in the development of this class of 
“synthetic” nucleosides. We thus hope that this review will 
provide a useful aid to medicinal chemists dealing with 
nucleosides and heterocyclic systems on a daily basis. 
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